Speakers - Oussama Khatib

Article Index

OCEAN ONE: A ROBOTIC AVATAR FOR OCEANIC DISCOVERY
Oussama Khatib
Stanford University

Talk Abstract: The promise of oceanic discovery has intrigued scientists and explorers for centuries, whether to study underwater ecology and climate change, or to uncover natural resources and historic secrets buried deep at archaeological sites. The quest to explore the ocean requires skilled human access. Reaching these depth is imperative since factors such as pollution and deep-sea trawling increasingly threaten ecology and archaeological sites. These needs demand a system deploying human-level expertise at the depths, and yet remotely operated vehicles (ROVs) are inadequate for the task. A robotic avatar could go where humans cannot, while embodying human intelligence and intentions through immersive interfaces. To meet the challenge of dexterous operation at oceanic depths, in collaboration with KAUST's Red Sea Research Center and MEKA Robotics, we developed Ocean One, a bimanual force-controlled humanoid robot that brings immediate and intuitive haptic interaction to oceanic environments. Teaming with the French Ministry of Culture’s Underwater Archaeology Research Department, we deployed Ocean One in an expedition in the Mediterranean to Louis XIV’s flagship Lune, lying off the coast of Toulon at ninety-one meters. In the spring of 2016, Ocean One became the first robotic avatar to embody a human’s presence at the seabed. This expedition demonstrated synergistic collaboration between a robot and a human operating over challenging manipulation tasks in an inhospitable environment. Tasks such as coralreef monitoring, underwater pipeline maintenance, and offshore and marine operations will greatly benefit from such robot capabilities. Ocean One’s journey in the Mediterranean marks a new level of marine exploration: Much as past technological innovations have impacted society, Ocean One’s ability to distance humans physically from dangerous and unreachable work spaces while connecting their skills, intuition, and experience to the task promises to fundamentally alter remote work. We foresee that robotic avatars will search for and acquire materials in hazardous and inhospitable settings, support equipment at remote sites, build infrastructure for monitoring the environment, and perform disaster prevention and recovery operations— be it deep in oceans and mines, at mountain tops, or in space

Bio: Oussama Khatib received his Doctorate degree in Electrical Engineering from Sup’Aero, Toulouse, France, in 1980. He is Professor of Computer Science at Stanford University. His work on advanced robotics focuses on methodologies and technologies in human-centered robotics including humanoid control architectures, human motion synthesis, interactive dynamic simulation, haptics, and human- friendly robot design. He is Co-Editor of the Springer Tracts in Advanced Robotics series, and has served on the Editorial Boards of several journals as well as the Chair or Co-Chair of numerous international conferences. He co-edited the Springer Handbook of Robotics, which received the PROSE Award. He is a Fellow of IEEE and has served as a Distinguished Lecturer. He is the President of the International Foundation of Robotics Research (IFRR). Professor Khatib is a recipient of the Japan Robot Association (JARA) Award in Research and Development. In 2010 he received the IEEE RAS Pioneer Award in Robotics and Automation for his fundamental pioneering contributions in robotics research, visionary leadership, and life-long commitment to the field. Professor Khatib received the 2013 IEEE RAS Distinguished Service Award in recognition of his vision and leadership for the Robotics and Automation Society, in establishing and sustaining conferences in robotics and related areas, publishing influential monographs and handbooks and training and mentoring the next generation of leaders in robotics education and research. In 2014, Professor Khatib received the 2014 IEEE RAS George Saridis Leadership Award in Robotics and Automation. More information about his research contribution can be found from http://khatib.stanford.edu/