
Pareto Explorer Framework
GUI-Documentation

Oliver Cuate∗

CINVESTAV

Sebastian Peitz†

University of Paderborn

Abstract

Here, we present the documentation for the Graphical User Interface (GUI) of the
Pareto Explorer (PE), a global/local exploration tool for the treatment of many objec-
tive optimization problems (MaOPs). This GUI focuses in the second step of PE, that
is, the local search along the Pareto set/front of the given MaOP is performed into user
specified directions. For this, we propose several continuation-like procedures that can
incorporate preferences defined in decision, objective, or in weight space.
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1 Introduction

In many applications the problem arises that several objectives have to be optimized con-
currently leading to multi-objective optimization problems (MOPs). Due to the increasing
complexity of practical problems, decision making processes are getting more and more so-
phisticated. Motivated by the advances in the design of algorithms for the numerical treat-
ment of MOPs with few objectives and their huge success in applications, there is a recent
trend to include more objectives into the optimization process. There is, however, one im-
portant characteristic of MOPs that has to be considered in their treatment, namely that the
solution set (the Pareto set or its image, the Pareto front) typically form (k− 1)-dimensional
objects, where k is the number of objectives. This fact has a crucial impact on the approxi-
mation qualities of the Pareto sets and fronts with respect to k. Due to this reason, MOPs
with more than four objectives are often termed many objective problems (MaOPs).

Continuous MOPs, as we consider in this work, can be stated as

min
x∈Rn

F (x)

s.t. g(x) ≤ 0

h(x) = 0,

(1)

where F : Rn → Rk, F (x) = (f1(x), . . . , fk(x))T is defined by the objective functions fi,
i = 1, . . . , k, and g(x) = (g1(x), . . . , gm(x))T and h(x) = (h1(x), . . . , hp(x))T are the inequality
and equality constraints, respectively. Q := {x ∈ Rn : g(x) ≤ 0 and h(x) = 0} is called the
domain of F .

Pareto Explorer (PE) is a global/local approach search for the effective treatment of
MaOPs. The PE method consists of two main stages: first, one Pareto optimal solution x0 is
computed or selected out of a set of possible solutions for the given problem; and secondly, the
Pareto landscape is explored around x0, where a steering is performed according to the DMs’
preferences. In general, the first part of the PE can be accomplished by any existing solver
for M(a)OPs. In this work, we present the documentation for the second second stage. Here
the PE will play its main role by restricting the search to a movement directed by the user’s
preferences. These preferences can be expressed in terms of directions in either decision or
objective space, as well as in the space of the weight vectors. The key for these methods will
be the work presented in [MS18] since (i) the proposed continuation method Pareto Tracer
(PT) inherently has steering features that can be exploited for the current context, and since
(ii) the results of [MS18] allow to explicitly compute the tangent spaces of both Pareto set
and front at every regular solution. Though it is already known since the seminal work of
Hillermeier ([Hil01]) that the Pareto sets and fronts locally form (k − 1)-manifolds under
certain assumptions, these are embedded in the (n + k)-dimensional space composed of the
decision space and the associated weight space derived from the KKT equations. Much more
detailed knowledge about the related tangent space has become available via a separation of
both spaces as done in [MS18].
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2 Pareto Explorer Method

The PE approach is mainly focused on the computation of a single trajectory along the
landscape defined by the Pareto set/front. PE can hence be seen as a compilation of methods
to follow the path given by the DM’s needs, ultimately leading him/her to discover what
he/she is looking for in a timely manner. The PE is thought to evolve as an interactive tool,
where it can receive feedback from the user at any stage of the exploration. The PT, on
the other hand, is designed to receive a fixed initial set of settings and run until completion,
i.e., ideally until an approximation of the entire solution set is generated. Both techniques
PT and PE complement each other and shall optimize their implementations based on their
respective scopes.

2.1 Steering in Objective Space

The first proposed approach is to perform the steering in objective space, i.e., PE considers
the case where the DM desires to change the objective values w.r.t. F (x0). That is, a
direction dy ∈ Rk is given with the aim to guide the search toward certain preferences that
are only known in objective space. However, as the Pareto front is not known, it is of course
unclear whether a movement in dy can be actually performed. Then, since the linearized
front at F (x0) can be computed, and since the underlying idea is to steer the search along
the set of optimal solutions, it makes sense to perform a ‘best fit’ movement.

2.2 Steering in Decision Space

Similar to the steering in objective space, PE can perform a best fit movement along the
Pareto set for a given preference direction in decision space. Analogously to the best fit
movement in objective space, for a given point xi ∈ M and a given a direction dx ∈ Rn in
decision space, one can project dx onto the linearized Pareto set at xi. This vector νi can
now be used as predictor in a PC step of the PT.

2.3 Steering in Weight Space

The last movement we present here is the steering in weight space where the DM might be
interested to gradually change the importance of the objectives. The key for this steering
is the observation that a vector µ ∈ Rk with

∑k
i=0 µi = 0. Another way to see this is that

for every two convex weights α(1), α(2) ∈ Rk the difference vector ∆α := α(1) − α(2) is of
the above form. For k = 2 objectives, there are only two choices for µ after normalization:
µ = (1,−1)T and µ = (−1, 1)T . The first one means that the importance of f1 should be
increased and thus its values be decreased for the sacrifice of f2. Hence, µ = (1,−1)T should
result in a movement left up the Pareto front from F (x0) while µ = (−1, 1)T should result
in a movement right down.
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Figure 1: Left: Best fit direction d
(i)
y for a given direction dy in objective space. Right:

Best fit direction in decision space for a given direction dx in decision space.

3 The GUI

Here we describe the components of the GUI that easily allows to the user defining the
preferences for the second stage of the PE. We assume that we have an initial optimal
solution.

3.1 Main Window

The main window of the Pareto Explorer (cf. fig 2) consists of 3 parts:

1. The steering window (top left)

2. The figures of the Pareto set/front

3. The log window (bottom)

In the steering window, the movement direction of the Pareto Explorer can be specified.
For details, see section 3.1.1. The figures show the Pareto set and front. Depending on the
type of visualization (cf. section 5), either all computed points (old / new) or a comparison
between the last point and the new point are shown. In the log window, information about
the current point as well as the absolute and relative change in all dimensions between the
current and the last point are shown. For details, see section 3.5.

3.1.1 Steering

Two possibilities exist to steer on the Pareto set / front, either by defining a steering vector
using the steering window or by clicking on the figures. The second option is only available
for some types of visualization: Bars, Value vs. Index, Wheel (cf. section 3.4).

When using the Steering window, three steering methods are available (cf. section 2):

Decision space: Move in the prescribed direction in decision space
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Figure 2: Main window of the Pareto Explorer

Objective space: Move in the prescribed direction in objective space

µ space: Explicitly define µ. Note that µ has to fulfill the condition
∑k

i=1 µi = 0

For each steering method, there is either the possibility to explicitly type in the compo-
nents of the steering vector by selecting Values (cf. fig. 2, {x1, x2, x3, x4} = {−1, 0, 0, 0})
or to priorize different components over others via sliders by selecting Priorization. Steering
may be performed in three different spaces

Remark: Note that if the prescribed direction is infeasible because it would result in non-
optimal values, the vector is projected onto a feasible direction. If a corner of the Pareto set
is reached or the projection is 0, the Pareto Explorer stops. This information will be given
in the log window. For details on the stopping criteria, see section ??.

Clicking on the figures:

3.1.2 Menus

• Pareto Explorer

New: Restarts the GUI, thereby deleting all data and resetting all options to
default

Open Case: Loads a previously saved mat file, including options and already
computed data.
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Save Case: Saves all existing information to a mat file, including options and
already computed data.

Export: Calls the export window (cf. section 3.6), where data, graphics and log
data may be exported.

Window Size: Allows to change the size of the main window.

Exit: Ends the Pareto Explorer.

• Configure

Model: Load / Configure the model (cf. section 3.2)

Algorithm: Configure the Pareto Explorer algorithm (cf. section 3.3)

Visualization: Configure the visualization (cf. section 3.4)

Log: Configure the log window (cf. section 3.1.2)

Configuration: (sections to )

3.2 Loading / Configuring a model

The model can be configured via Configure → Model (Ctrl + M).
Files have to be given as an m-file of the form [y ] = model(x) or, alternatively, with

multiple outputs ([y, J ] = model(x)). This depends on the option chosen in the box Input
Options.

3.2.1 Input Options

All inputs separately: Four files can be selected, each with a single input and a
single output (y = f(x)). A model file is mandatory, the other files are optional. If
no file for the Jacobian is given, derivatives are computed using finite differences. If
an equality constraint file is given but not a file for the respective gradients, these are
computed using finite differences as well.

Model + Jacobian & Equality Constraint + Jacobian: With this option, two
files can be given, each with two outputs ([y, J ] = model(x) / [h, Dh] = constraints(x)).
It is possible to return the derivatives as empty ([]). Nevertheless, the second output
needs to be specified.

All inputs in one file: With this option, one file with four outputs ([y, J, h, Dh] =
model(x)) needs to be specified. It is possible to return one or more fields as empty ([]).
Nevertheless, four outputs need to be specified.

3.2.2 Dimension of the problem

In the box Dimension of the problem the correct dimensions of the image and the objective
space need to be specified. In case the dimensions are incorrect, an error might occur when
hitting the OK button since the model is evaluated to compute the initial point.
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Figure 3: Model configuration window

3.2.3 Initial point x0

Here, the initial point of the exploration is defined. If all parameters have the same initial
value (e.g. x0 = {0, 0, 0, 0}), it is possible to enter this value once (cf. fig 3, x0 = 0). The
other option is to enter a value for each dimension, separated by ”;” (e.g. x0 = 1; 2; 3; 4).

3.2.4 Bounds on decision variables

Here, upper and lower bounds for the decision space may be specified. The functionality is
the same as for the initial value x0. For unbounded problems, insert ±Inf .

3.3 Configuring the algorithm

The Pareto Explorer algorithm can be configured via Configure → Algorithm (Ctrl + A).

Figure 4: Algorithm configuration window

Here, parameters for the numerical behavior of the Pareto Explorer method can be spec-
ified (cf. fig. 4). For each parameter, the default value is given as well as an explanation of
it’s purpose (? buttons).

opts.d

is the desired step length in objective space.
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This parameter represents an approximation to the distance between the image of two
consecutive solutions, i.e.

d ≈ ‖F (xi)− F (xi−1)‖

- Default value: opts.d = 0.1;

opts.c1

constant for the corrector step length control.

The corrector uses a kind of Armijo condition to control the step size in the Newton
method for multiobjective optimization problems. This condition allows to get a step
size t small enough, for a direction v, such that v is a descent direction and the following
inequality is satisfied:

fj(xi + tv) ≤ fj(xi) + c1tv
T∇fj(xi),

for all j = 1, . . . , k at the point xi.

- Default value: opts.c1 = 0.1;

opts.correct tol

is the tolerance used to finish the corrector.

This tolerance is used in the newton method for multiobjective optimization problems
and it has a relationship with the accuracy of solutions. A small value for the tolerance
means better accuracy, but it increases the computational cost.

- Default value: opts.correct tol = 5 * sqrt(eps1);

opts.correct its

is the max number of iterations for the corrector.

Each new point which is computed by the corrector is considered as a new iteration,
and the method takes the total of points for this stop criterion.

- Default value: opts.correct its = 1000;

opts.tol

is the tolerance used to finish the continuation algorithm.

This tolerance is considered by stop criteria of the Pareto Explorer method.

- Default value: opts.tol = 1e-3;

3.4 Visualization options

The visualization can be configured via Configure → Visualization (Ctrl + V).
Different types of visualization can be selected for the decision space (left) and the ob-

jective space (right), respectively:

1Here eps is the Floating-point relative accuracy in Matlab. Is the distance from 1.0 to the next largest
double-precision number, that is eps = 2−52.
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Figure 5: Visualization configuration window

2D/3D: Creates a 2D/3D plot of parameter / function values. In case the respective
dimension is higher, a projection window is shown (cf. fig. 5) where the parameter /
function values of interest can be chosen. Points that already existed will be displayed
in blue, the new computed points will be displayed in red

Bars: Creates a bar plot with a bar for each dimension. The new values are displayed
in red, the values from the last step are displayed in blue (cf. fig. 2, left plot). If the
number of bars is ≤ 10, the relative change in % is shown in the figure itself.

Wheel: Creates a wheel plot where the parameters/objectives are plotted on axes in
radial direction (cf. fig 2, right plot). The new values are displayed in red, the values
from the last step are displayed with a blue line. The values are normalized such that
the maximal value is in the center and the minimal value is on the outer circle. For
this reason, this option is only available for the decision space if all variables have an
upper and a lower bound and for the objective space if the Nadir and Utopia point
are known. The Nadir and Utopia point can be specified in the visualization options
(cf. fig. 5) or, if unknown, calculated. Note that for this purpose, a single objective
optimization problem has to be solved for each objective separately.

Value vs. Index: Creates a plot where all parameter / function values are plotted on
the y-axis vs their respective index. The new curve is displayed in red, the curve from
the last step is displayed in blue. This option may be useful when the decision space is
a discretized control trajectory, e.g. in optimal control problems

If the chosen type of visualization has markers (2D, 3D, Value vs. Index), their size
may be specified in the box Marker Size. Also, the Legend Position may be selected for both
the decision and the objective space.

Remark: The Nadir and Utopia point are updated each time the plots are created. This
is necessary for the Nadir point, for the Utopia point only if the point was not explicitely
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computed or when the computation was incorrect, e.g. due to local minima.

3.5 Log

In the log options (cf. fig. 6), the information occurring in the log window in the bottom of
the main GUI (cf. fig. 2, bottom) can be specified. Note that a more extensive log is created
which can be exported to a text file (cf. section 3.6).

Figure 6: Log configuration window

3.6 Export possibilities

In the export window, all information generated by the Pareto Explorer may be exported
(cf. fig. 7):

Figure 7: Export window
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Top: Computed Points on the Pareto set / front to a text file

Middle: Figures to various file formats; It is also possible to create the figure in an
External figure to allow further customization

Bottom: Log data to a text file
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