neo2018

Discrete Optimization

Chair: Dra. Marcela Quiroz Castellanos

Applications of discrete optimization problems arise in engineering, science, economics, and everyday life. It is common to find in many real-world linear, as well as nonlinear programming, that all, or a fraction of variables are restricted to be integer, yielding integer or mixed integer-discrete-continuous problems. Many of these problems are computationally intractable. The approaches that are addressing these problems include: traditional optimization techniques, efficient preprocessing schemes, decomposition techniques, fast heuristics, metaheuristics and hybrid methods. This special session serves as a platform for researchers from all over the world to present and discuss recent advances and perspectives in the mathematical, computational and applied aspects of all areas of integer programming, combinatorial optimization and mixed integer-discrete-continuous optimization.

 Topics of interest include (but are not limited to):

  • single and multi-objective optimzation
  • deterministic approaches
  • approximation algorithms
  • randomized algorithms
  • heuristics
  • metaheuristics
  • simulation
  • stochastic programming
  • real-world applications

All submission will be peer-reviewed by a panel of international experts.

Contact: Dra. Marcela Quiroz Castellanos This email address is being protected from spambots. You need JavaScript enabled to view it.

Biographi: Marcela Quiroz is a full time researcher at the Universidad Veracruzana, Mexico and a member of the National System of Researchers. Her research interests include: combinatorial optimization, metaheuristics, experimental algorithms, characterization and data mining. She received her Ph.D. in Computer Science from Instituto Tecnológico de Tijuana, Mexico. She studied engineering in computer systems and received the degree of master in computer science at the Instituto Tecnológico de Ciudad Madero, Mexico.